Example 17 Find points on the curve $\frac{x^2}{4} + \frac{y^2}{25} = 1$ at which the tangents are (i) parallel to x-axis (ii) parallel to y-axis.

Solution Differentiating $\frac{x^2}{4} + \frac{y^2}{25} = 1$ with respect to *x*, we get $\frac{x}{2} + \frac{2y}{25}\frac{dy}{dx} = 0$ $\frac{dy}{dx} = \frac{-25}{4} \frac{x}{v}$

or

(i) Now, the tangent is parallel to the x-axis if the slope of the tangent is zero which

gives $\frac{-25}{4}\frac{x}{y} = 0$. This is possible if x = 0. Then $\frac{x^2}{4} + \frac{y^2}{25} = 1$ for x = 0 gives $y^2 = 25$, i.e., $y = \pm 5$.

Thus, the points at which the tangents are parallel to the x-axis are (0, 5) and (0, -5).

(ii) The tangent line is parallel to y-axis if the slope of the normal is 0 which gives $\frac{4y}{25x} = 0$, i.e., y = 0. Therefore, $\frac{x^2}{4} + \frac{y^2}{25} = 1$ for y = 0 gives $x = \pm 2$. Hence, the

points at which the tangents are parallel to the y-axis are (2, 0) and (-2, 0).

Example 18 Find the equation of the tangent to the curve $y = \frac{x-7}{(x-2)(x-3)}$ at the point where it cuts the x-axis.

Solution Note that on x-axis, y = 0. So the equation of the curve, when y = 0, gives x = 7. Thus, the curve cuts the x-axis at (7, 0). Now differentiating the equation of the curve with respect to x, we obtain

 $\frac{dy}{dx}\Big|_{(7,0)} = \frac{1-0}{(5)(4)} = \frac{1}{20}$

$$\frac{dy}{dx} = \frac{1 - y(2x - 5)}{(x - 2)(x - 3)}$$
 (Why?)

or

210 MATHEMATICS

Therefore, the slope of the tangent at (7, 0) is $\frac{1}{20}$. Hence, the equation of the tangent at (7, 0) is

$$y - 0 = \frac{1}{20}(x - 7)$$
 or $20y - x + 7 = 0$

Example 19 Find the equations of the tangent and normal to the curve $x^{\frac{2}{3}} + y^{\frac{2}{3}} = 2$ at (1, 1).

Solution Differentiating $x^{\frac{2}{3}} + y^{\frac{2}{3}} = 2$ with respect to *x*, we get

$$\frac{2}{3}x^{\frac{-1}{3}} + \frac{2}{3}y^{\frac{-1}{3}}\frac{dy}{dx} = 0$$
$$\frac{dy}{dx} = -\left(\frac{y}{x}\right)^{\frac{1}{3}}$$

or

Therefore, the slope of the tangent at (1, 1) is $\frac{dy}{dx}\Big]_{(1,1)} = -1$.

So the equation of the tangent at (1, 1) is

$$y-1 = -1 (x - 1)$$
 or $y + x - 2 = 0$

Also, the slope of the normal at (1, 1) is given by

$$\frac{-1}{\text{slope of the tangent at (1,1)}} = 1$$

Therefore, the equation of the normal at (1, 1) is

$$y - 1 = 1 (x - 1)$$
 or $y - x = 0$

Example 20 Find the equation of tangent to the curve given by

$$x = a \sin^3 t, \qquad y = b \cos^3 t \qquad \dots (1)$$

at a point where $t = \frac{\pi}{2}$.

Solution Differentiating (1) with respect to t, we get

$$\frac{dx}{dt} = 3a\sin^2 t\cos t$$
 and $\frac{dy}{dt} = -3b\cos^2 t\sin t$

APPLICATION OF DERIVATIVES 211

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{-3b\cos^2 t\sin t}{3a\sin^2 t\cos t} = \frac{-b}{a}\frac{\cos t}{\sin t}$$

Therefore, slope of the tangent at $t = \frac{\pi}{2}$ is

or

$$\left[\frac{dy}{dx}\right]_{t=\frac{\pi}{2}} = \frac{-b\cos\frac{\pi}{2}}{a\sin\frac{\pi}{2}} = 0$$

Also, when $t = \frac{\pi}{2}$, x = a and y = 0. Hence, the equation of tangent to the given

curve at $t = \frac{\pi}{2}$, i.e., at (a, 0) is

$$y - 0 = 0(x - a)$$
, i.e., $y = 0$.

- 1. Find the slope of the tangent to the curve $y = 3x^4 4x$ at x = 4.
- 2. Find the slope of the tangent to the curve $y = \frac{x-1}{x-2}$, $x \neq 2$ at x = 10.
- 3. Find the slope of the tangent to curve $y = x^3 x + 1$ at the point whose *x*-coordinate is 2.
- 4. Find the slope of the tangent to the curve $y = x^3 3x + 2$ at the point whose *x*-coordinate is 3.
- 5. Find the slope of the normal to the curve $x = a\cos^3\theta$, $y = a\sin^3\theta$ at $\theta = \frac{\pi}{4}$.
- 6. Find the slope of the normal to the curve $x = 1 a\sin\theta$, $y = b\cos^2\theta$ at $\theta = \frac{\pi}{2}$.
- 7. Find points at which the tangent to the curve $y = x^3 3x^2 9x + 7$ is parallel to the *x*-axis.
- 8. Find a point on the curve $y = (x 2)^2$ at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).